На информационном ресурсе применяются рекомендательные технологии (информационные технологии предоставления информации на основе сбора, систематизации и анализа сведений, относящихся к предпочтениям пользователей сети "Интернет", находящихся на территории Российской Федерации)

Хайтек+

23 подписчика

Свежие комментарии

  • Егор Горшков
    А почему бы и да, как говорится.Храните биткоины ...
  • Цуркан Арк
    Сказки, на три недели, а потом полгода жечь щепу?В Финляндии подкл...
  • Иван Вакула
    В России после распада СССР и стараниями либеральной власти образование перевели на западные методики, что из этого п...Различия в успева...

Создан революционный терагерцовый лазер. Он изменит многое

Компактные лазеры покорили большую часть электромагнитного спектра, от ультрафиолетового до инфракрасного, и сделали возможными технологии цифровой коммуникации, печати, сканирования и многие другие. Но одна ключевая область спектра остается неподвластной: терагерцовый диапазон, лежащий между инфракрасным и микроволновым.

Инженеры разрабатывают источник ТГц-излучения, способный проникать сквозь непрозрачные объекты и раскрывать их химический состав, но компактные терагерцовые лазеры работают только при ультранизких температурах, то есть в лабораторных условиях.

Однако теперь это в прошлом. Специалисты из США и Канады описали в журнале Nature Photonics технологию создания терагерцового лазера размером с рисовое зерно на чипе, который работает при температуре 250 К или –23 °C, в пределах холодильника размером с хоккейную шайбу, https://www.sciencemag.org/news/2020/11/new-lasers-fire-tera... Science.

Стандартные лазеры на чипах генерируют фотоны, когда электроны попадают в электронные вакансии полупроводника, конструкция которого определяет цвет. Например, нитрид галлия излучает синий свет, арсенид галлия – красный. Однако ни один из сплавов не дает излучение в терагерцовом диапазоне.

В 1994 ученые AT&T Bell Labs создали новый тип лазера – квантово-каскадный лазер (QCL) с сотнями слоев полупроводников определенной толщины. Сначала он излучал инфракрасный свет, но в 2002 был создан терагерцовый квантово-каскадный лазер. Это устройство необходимо было охлаждать до 50 К, но в прошлом году команда под руководством Жерома Файста из Швейцарии разработала терагерцовый QCL, работавший при 210 К.

Однако он требовал громоздких и дорогих криогенных установок.

Теперь команда ученых из MIT и Университета Уотерлу продемонстрировала лазер новой конструкции, который обеспечивает работу электронов при температуре достаточно низкой для того, чтобы ее можно было добиться обычными термоэлектрическими охладителями. Более того, та же технология позволит в будущем создавать терагерцовые лазеры, действующие при комнатной температуре.

Их можно будет подключать к терагерцовым детекторам, которые уже разрабатывают ученые других стран. Этот союз приведет к появлению новых технологий, позволяющих, к примеру, распознать рак кожи без биопсии или без труда проверить пассажиров авиалиний на наличие взрывчатых веществ и нелегального груза.

Не так давно австрийским ученым https://hightech.plus/2020/01/22/avstriiskie-fiziki-razrabot... создать рекордный источник терагерцового излучения. Он выдает различные длины волн по всему терагерцовому спектру, что открывает возможность создания коротких радиационных импульсов крайне высокой интенсивности.

 

Ссылка на первоисточник
наверх
Новости СМИ2